
An Architecture for Modular Distributed Simulation with
Agent-Based Models

David Scerri1 Sarah Hickmott1

Alexis Drogoul2

1 School of CS and IT
RMIT University

Melbourne, Australia
firstname.lastname@rmit.edu.au

Lin Padgham1

2UMI 209 UMMISCO IRD/UPMC
Institut de Recherche pour le Développement

Hanoi, Vietnam
alexis.drogoul@gmail.com

ABSTRACT
Agent-based simulations are an increasingly popular means
of exploring and understanding complex social systems. In
order to be useful, these simulations must capture a range of
aspects of the modeled situation, each possibly requiring dis-
tinct expertise. Moreover, different paradigms may be useful
in modelling, ranging from those that use many lightweight
reactive agents, to those that use cognitive agents, to those
that focus on agent teams and organisational structures.
There is need for an architecture which supports the de-
velopment of a large simulation, through the integration
of separately developed modules. This paper describes a
framework and architecture which facilitates the integration
of multiple agent-based simulations into a single global
simulation. This architecture naturally supports distributed
simulation and incremental development, which are ways
of addressing the computational and conceptual complexity
of such systems. In this paper we focus particularly on
how to ensure proper management of simulation data that
is affected by agents in different modules, at the same
logical time. We also provide some preliminary performance
evaluation addressing scalability, as well as a comparison of
how other available systems handle the issue of shared data.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]

General Terms
Design, Experimentation

Keywords
Agent-based Modeling, Simulation, Modular Architecture,
Shared Variables, Conflict Resolution

1. INTRODUCTION
Agent-Based Modelling is emerging as a popular technique

for simulating complex social systems in order to inform

Cite as: An Architecture for Modular Distributed Simulation with
Agent-Based Models, D. Scerri, S. Hickmott, A. Drogoul and L.
Padgham, Proc. of 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

areas such as policy development and enhance theoretical
understanding of social phenomena (see e.g. [5, 8, 2]). How-
ever, in order to be useful, such simulations must typically
capture many different aspects of the relevant area. This
makes them time consuming and complex to develop, as well
as requiring various areas of expertise. In addition, different
paradigms may be more appropriate for different aspects,
ranging from paradigms that use many lightweight reactive
agents, to those that use cognitive agents, to those that focus
on agent teams and organisational structures. Finally, there
is some criticism that current usage of agent based models
lacks transparency and requires over-simplification to the
point they can not provide insightful results [4].

In our work on agent-based simulation for exploring
approaches to city-based adaptation to climate change, we
aim to build up a complex simulation by incrementally
adding new agent-based models created by members of a
large distributed community, interested in the application
area. We have thus developed a platform which allows
individual modules, possibly pre-existing and implemented
under different paradigms, to be integrated in a com-
mon environment. The architecture aids the creation
of more complex global simulations, whilst at the same
time improving the transparency of single modules by
reducing their domain of interest. It also naturally supports
distributed simulation, which is one way of addressing the
computational complexity of such systems.

Transparency of the global simulation requires that the
execution framework integrates the modules in a principled
and fair manner, that does not lead to anomalies with
respect to the domain being modelled. One particular
issue which arises is how to appropriately manage the
conceptually parallel execution of all modules, at a single
logical timestep of the simulation. This is one of the key
issues explored in this paper.

The High Level Architecture (HLA) standard [1, 14]
developed by the US Department of Defense is a widely used
specification for distributed simulation which supports inter-
operability of separate heterogeneous modules. However, it
does not adequately address the issues that arise in the kind
of modularisation we are targeting. In particular difficulties
arise when multiple modules affect the same variable at
the same logical time. HLA assumes that any variable (an
object attribute in HLA) is owned by a particular module [9].
While that ownership can be transferred between modules,
allowing multiple modules to update the variable, it does

541

541-548

not provide any control nor support for managing logically
concurrent access to a variable. The type of modelling done
in many HLA applications avoids the need for this. For
example if different spatial/location areas of the simulation
are covered by different modules, then objects will not
need to be modified by two modules at the same logical
timestep (as they cannot be in two places at once). However
we explicitly aim to model multiple processes potentially
affecting the same aspect of an environment. For example
both a disease module and an immigration module would
affect population in a particular location.

Work such as [10] provides some basis for the interop-
eration of separate agent-based models via HLA-Repast, a
generic middleware layer which integrates HLA and Repast
(a popular multi-agent simulation toolkit [3]). However this
work has a different focus to ours, seeking to modularise
an existing simulation for the purpose of distributed ex-
ecution (as opposed to building a simulation through the
incremental addition of new modules). Consequently their
approach assumes a level of homogeneity among modules
which we want to avoid. In particular, with respect to their
management of atomic actions involving multiple variables,
HLA-Repast requires updates to be logically linked, so that
multiple variable changes can be inferred from a single
variable update. This is not practical when incrementally
integrating independently developed modules, and is also
not transparent.

The architecture presented here is based on the idea that
conflicts over shared data should be resolved at a more
global level than the modules involved, as otherwise modules
are (potentially) required to have information about each
other. At the same time, for the purpose of modularity,
conflicts involving specialist knowledge of the module should
be resolved locally within that module.

In the following section we use an example to explore the
challenges of simulating the conceptually parallel execution
of multiple modules which are dependent on both shared
and local data. We then describe our architecture and
implementation, which addresses these and other issues and
provides a sound basis for integrating multiple modules
into a common simulation environment. We finish with a
preliminary performance evaluation that considers the case
of both computationally intensive and lightweight agents.
We also describe in detail the behaviour of our system as
compared to other systems in the literature, with respect to
actions requiring shared data.

2. EXAMPLE
In this section we incrementally develop an example

involving a module which requires the use of both local and
shared variables. We show some of the problems that can
arise when the module executes an action involving one or
multiple shared variables. This then sets the scene for some
aspects of our architecture.

Consider an agent-based model (ABM) module which
captures the spread and treatment of the H1N1 virus. The
availability of H1N1 antivirals is modeled by a variable
which is local to this module. Shared variables capture
the availability of a hospital bed, and public funding for
the issue of treatment, both of which may be required by
other modules. A successful treatment for a person infected
with H1N1 requires the availability of an antiviral, a bed
and sufficient public funding. The amount of public funding

required to treat an infected agent depends on their type of
health insurance.
Module Name : H1N1
Local Variables : Antivirals, Agent.infectedStatus,

Agent.insurance, InfectedAgents∗, HealthyAgents∗.
∗These are virtual lists which return the subset of
agents such that Agent.infectedStatus is set to true
or false respectively.

Shared Variables : BedsAvailable, PublicFunding
Description : Each agent represents a single person.

At each timestep, agents interact and with some
probability a member of HealthyAgents may con-
tract H1N1 from a member of InfectedAgents. All
members of InfectedAgents progress through a pe-
riod of infection and eventually execute a Request-
Treatment action. This atomic action succeeds if the
agent can occupy one of the BedsAvailable, consume
one of the Antivirals, and use some amount of
PublicFunding which is dependent on their type of
insurance (Agent.insurance). In this case, the agent
quickly recovers and Agent.infectedStatus=false. If
there are insufficient BedsAvailable, Antivirals, or
PublicFunding, then the action fails in its entirety, in
which case the agent dies or recovers naturally with
some probability.

2.1 An Independent Module
Let us gradually work up to this problem. First consider

the case where the only condition for Request-Treatment
to succeed is that it is possible to consume one of the An-
tivirals. If there are multiple requests at the same logical
time, then the module may randomly select and succeed
these requests until such point that all the Antivirals are
consumed. This is indeed how this single H1N1 module may
be simulated, e.g. in Repast. It seems fair to say that the
outcome of this sequential execution would model the reality
of multiple infected persons seeking treatment at the same
time, with only a subset succeeding if there are insufficient
resources for all.

2.2 A Single Shared Variable
Now let us introduce one of the shared variables, Pub-

licFunding. Suppose now that the conditions for Request-
Treatment to succeed are that it is possible to consume one
of the Antivirals and there is sufficient PublicFunding to
pay for the treatment.

If the H1N1 module had a number of InfectedAgents it
may wish to Request-Treatment for all of them at a single
logical timestep. If another module also needed to access
PublicFunding then it could be considered unfair if the
H1N1 module consumed all of this resource by obtaining
ownership of the object (as would be done in HLA), and not
releasing it until all its actions were completed. We would
prefer a mechanism that only allowed modules to perform
a single action affecting shared variable(s) at a time. This
could potentially be accomplished using HLA if ownership
release was enforced after every update of a variable. There
could be a similar issue if, for example, a single action in
one module consumed a large amount of a shared resource.
Randomisation of the order in which modules are allowed to
act addresses this to some extent, similarly to the way the
independent module discussed above was fair in its random
distribution of Antivirals. If it makes sense for the domain,
the modeller can potentially split the action into smaller

542

ones to enable more even distribution between modules. It is
important to aim for a framework where this option remains
in the modeller’s control.

2.3 Multiple Shared Variables
We finally introduce the second shared variable, Bed-

sAvailable. Now the conditions for Request-Treatment
to succeed are that it is possible to consume one of the
Antivirals, there is sufficient PublicFunding to pay for the
treatment, and BedsAvailable is at least one.

The previous approach of obtaining exclusive local own-
ership of shared variables can now suffer from deadlock. For
example, suppose the H1N1 module obtains ownership of
the BedsAvailable variable; meanwhile another hospital-
related module is holding on to PublicFunding and awaiting
ownership of BedsAvailable: deadlock. Observe that this
problem does not usually occur in applications using the
HLA because modules do not generally modify the same
variables at the same logical time; however, we aim to model
situations where this is needed.

HLA-Repast avoids these issues by defining middleware
which transparently obtains ownership whenever a shared
variable is updated within the module. In the case where an
action needs to modify multiple variables, an event-handler
can be used to infer other changes from a single variable
modification, i.e. updating one shared variable triggers
the automatic update of some related variable(s). This
approach suffices for the example in [10] because it assumes
homogeneous modules and updates which are clearly and
logically linked. However in a system like the one we are
developing their approach becomes quickly impractical if not
impossible.

2.4 Central Coordination
It is apparent that it may be useful to have a central agent

that owns all the shared variables within a certain scope
and takes full responsibility for coordinating and applying
interrelated updates to these variables. Modules will not
need to acquire ownership of shared variables themselves,
and thus there will be no problem with deadlock when
actions involve multiple shared variables. Furthermore
we will not require every module to know the variable
dependencies entailed by the actions of every other module.
A means of coordination which is external to the modules
would also have other benefits, such as allowing for more
reasoning power with respect to the distribution of a shared
resource. For example multiple requests can be taken, prior
to deciding which ones will and will not succeed.

There are some anomalies which can arise through this
approach however, and must be accounted for. Firstly,
consider that we will be allowing a module to request
transactions involving multiple shared variables. This
requires some means of grouping related modifications so
they are applied (or rejected) in their entirety. For example,
if the H1N1 module’s request to decrement the number of
BedsAvailable is rejected, then its related request to use
some amount of PublicFunding for treatment should also
be rejected.

Secondly, consider that the success of an action depends
on internal and external constraints, i.e. constraints involv-
ing both local and shared variables. Once an update to
a shared variable is committed, it should not be the case
that the update needs to be rolled back due to a constraint
internal to a module being violated. Thus a request to

update shared variables should not be made unless local
conditions for success are met. At the local level the
module can choose to either suspend until the result of a
possible external conflict is known, or save the state at the
point where the request is made, rolling a module back to
this state if the action fails. Rolling a module back may
require a significant amount of information to be stored
every time an action involving shared variables is executed.
Either way, careful consideration must be given to ensure
the final output implies no commitment to the rejected
action. To see this, recall that the particular amount of
PublicFunding needed to succeed a Request-Treatment
action will depend on Agent.insurance, e.g. private or
public. Now suppose that Antivirals==1, and two agents
initiate Request-Treatment actions at the same logical time.
Only one of these agents has private health insurance. At
the same logical time, the value of PublicFunding is only
sufficient for a patient with private health insurance to be
treated. Clearly, resolution of the internal and external
conflicts associated with this request should not result in
both agents being denied treatment. That is, if two actions
are internally conflicting, and one of these experiences
conflict externally, then the other action should have the
opportunity to succeed.

3. ARCHITECTURE FOR MODULARITY
We describe here an architecture to realise the vision

of a platform which allows the integration of multiple
modules in a common simulation environment, where each
module captures the representation and reasoning about
some specialised aspects of the domain (e.g. disease spread,
employment, economic aspects, etc.)

We have implemented a modified version of Civilization
IV as the user interface for the system. It serves as a 3D
environment for showing the state of the overall simulation
as well as allowing the user to interact with a given city
in ways which can affect the operation of the modules.
This popular game platform was chosen for its openly
available SDK and potential for modification. There is also
an established community of modifiers of the game which
supports reuse and collaboration.1

The architecture provides some centralised services which
integrate separate modules into a common simulated envi-
ronment. These services support reasoning within a module
over local data, but controls the access to shared data in a
manner that models logically concurrent access to shared
variables where appropriate. The resolution of conflicts
at the module and system level is managed to avoid the
possible anomalous action failures described in the previous
section. This approach facilitates both distributed execution
and reuse of existing models.

Our architecture currently provides two main services
to the modules in the system. The first is that of Time
Manager (TM), which ensures that all modules advance
time in a consistent way. This is implemented in much
the same way as the conservative algorithm of the HLA
[6]. The second service is that of the Conflict Resolver
(CR), which manages module interaction with shared data
to avoid the potential problems identified in the previous
section. This service implements the global co-ordination

1For a list of open source modifications based on Civilization
IV see e.g. http://sourceforge.net/projects/civ4mods/.

543

Figure 1: The system architecture, where LV =
Local Variable and SV = Shared Variable.

approach described in the previous section, by encapsulating
all shared variables and regulating access to them in a fair
and principled way.

In the following, we define the world state as a set of
value assignments to shared variables. The local variables
of a module are those variables which can only be modified
by that module. Shared variables are those that may be
modified by multiple modules. Conflict is the potential for
the violation of a variable constraint. This can be internal
conflict, i.e. involving local variable(s), or external conflict
involving shared variable(s).

3.1 Time Management and Synchronization
The Time Manager service dictates the current logical

time of the simulation, based on indications from modules
regarding their next desired time of execution. Within these
constraints, the modules must manage their own execution.

The TM must support both: (1) time-driven modules
operating at different levels of granularity, and (2) event-
driven modules. To do this we use a scheme similar to
the conservative scheduling of HLA [6], which addresses a
number of the synchronisation subtleties discussed in [7].
Modules must submit a request to the TM, to advance to
a new logical time. The TM then sorts these and picks the
earliest time in the queue, say T1. All modules are notified
that the time will be advanced to T1, and at the same time
receive an update of the world state (from the CR).2 The
updated state information may trigger execution of event-
driven modules. The new logical time may trigger execution
of time-driven modules.

The modules to run are initially included in an active
list. Each module in this list runs, executing actions as
appropriate, until they indicate that they are done, at which
point they are removed from the active list. For time driven
modules this will be via a time advance request. An active
module may intermittently stop to await a response from
the CR regarding a request to execute an action in the
environment (see Section 3.2). When the active list is empty
(i.e. all modules have finished executing for the current
timestep), the TM service advises the CR that the time
will be progressed. This causes it to send out state updates
to each module for any variables they have registered an
interest in.3 The TM then advances the logical time to the

2We could easily exclude some modules if we have knowledge
that they will not run at this time.
3Modules may be interested in updates to a larger set of

minimum of all the requests, and the process repeats.
We note that no agent can access changes to shared

variables during a logical time step. Thus agents are not able
to change their intended actions based on something which
occurred at conceptually the same time, which we consider
an important characteristic for appropriate modelling.

3.2 Action Execution and Conflict Resolution
The key features which we have aimed for, and believe are

important in our Conflict Resolver are:

1. Effects of atomic actions are applied consistently, i.e.
as a single transaction.

2. The interaction of internal and external conflict reso-
lution must not result in anomalous failure of actions.

We define an action, as is usual, by a set of preconditions
which are necessary for the action to be successfully exe-
cuted, and a set of effects which are the relevant changes to
the world state that result from the action. We define an
external action as consisting of the subset of preconditions
and effects which refer to shared variables (which we will
call pre and eff respectively). When a module wishes to
execute an action involving shared variables, it must send
a request to the CR containing the external action. The
CR will then inform the module whether or not the action
has executed successfully (in which case any local effects can
also be applied).

The CR service is responsible for allowing or denying
actions requested by the modules based on the concurrency
semantics and constraints of the variables involved. Suppose
that the current logical time has just been advanced to
T1, and the world state at this time is ST1 . Furthermore,
M = {m1...mn} is a set of modules wishing to execute
actions at logical time T1; A = {a1...an} is a set of pending
actions, with a maximum of one action per module; and, C
is the set of all actions approved for execution at logical time
T1. The CR fails an action ax ∈ A for one of two reasons.
Firstly, ax fails if one of its effects will violate a variable
constraint, based on the variable’s value in the state SC

T1 ,

where SC
T1 is the state ST1 updated with the combined effects

of actions currently in C. Secondly, ax fails if it is deemed to
be semantically mutually exclusive with any of the actions
in C. For example the standard notion of mutually exclusive
actions employed by the AI planning community could be
adopted [13], which would entail e.g. if the preconditions
of ax are clobbered by the effects of an action ay ∈ C then
ax is mutually exclusive with ay. If ax is failed, then an
ACTION FAIL reply is sent to the appropriate module, mx,
and the action is removed from the pending set A. Otherwise
an ACTION SUCCESS reply is sent, and ax is removed from
A and added to C. The CR continues to take actions from
A and process them in this manner. Once the TM indicates
that time will be advanced to T2 (at this, point the set A will
necessarily be empty), the CR executes the set of actions C
to obtain ST2 , and sends this information to all modules.

To ensure that no module has an unfair advantage in
accessing shared variables, it may be that the CR will delay
processing a module’s action request until other modules
have had the opportunity to make requests. Currently we
disallow modules getting ahead by more than one action,
but this number can be varied. It is also possible, if desired,

variables than those they affect. Some variables may provide
input to the module, without ever being affected by it.

544

to wait until having received an action from a number of
modules in order to potentially do some further processing
regarding a conflict. However this is likely to have some
performance costs.

In our system we actually have a hierarchy of CR services
for different levels of granularity in the system. For example
there is a CR service for variables shared within a single city,
but not beyond, a CR service for each grouping of cities, such
as a country, and a CR for the entire simulation. Variables
are declared and managed at the lowest level possible. It
could also be possible to partition variables within a level
and have multiple, distributed CRs, each with a separate
partition of variables.

3.3 Execution within Modules
Modules should not execute beyond the end of the current

logical timestep, at which point they receive a world state
update from the CR service, and can execute (if they wish)
within the next logical timestep. Modules must manage
their own execution within a timestep; this can be done in
an optimistic or conservative manner.

The conservative approach is to halt the module, each
time an action request is sent to the Conflict Resolver,
until a response is received. The optimistic approach is
to assume the request succeeds, and continue processing.
If the action is subsequently failed, then the module must
roll back to the state at which the request was sent, and
resume processing with the knowledge the action actually
failed. Note however that a module can not send a second
request to the CR, until the result of the first request is
received. To accommodate this, additional action requests
could be buffered, with failure of the first action resulting
in the buffer being emptied and the state being rolled back
appropriately.

The conservative approach is clearly much simpler, how-
ever it also means that there is likely to be some wasted
processing time while modules wait for a response. In
scenarios where the wait time for a response is high, and the
processing required by a model between each action being
determined is also high, it may be preferable to adopt the
optimistic approach. The modules we have implemented so
far all adopt the conservative approach.

4. BUILDING OR ADAPTING MODULES

4.1 Module interface requirements
ABMs may be developed in many different languages

and programming paradigms, although as our framework
is developed using Java, each module will need to provide a
Java interface to communicate with the rest of the system.
For Java based modules, including ABM models developed
in Repast[11, 3] or Ascape[12], this will simply involve im-
plementing an appropriate subclass. For modules developed
in other languages, a Java wrapper will need to be developed
specific to the module, although this should be trivial.
At present, we have implemented two basic interfaces
RepastProxyInterface and AscapeProxyInterface which
provide the basic functionality required to connect Repast
and Ascape models respectively. These interfaces take
the model settings as arguments, and initialise the model
along with a specialised implementation of the Runner
class to control the execution of the model. When the
ProxyInterface receives a message to advance time from the

TM service, the interface calls step on the Runner. When
the model makes a call to performAction, the interface
will send the request to the CR service, then block until
a response is received, thus implementing a conservative
approach transparently to the model.

4.2 Adapting Existing Models
Aside from providing the interface, there are some changes

which need to be made to existing ABMs to allow them
to conform to our framework requirements. Firstly, we
must identify each of the variables used in the model, and
determine whether they are local or shared. Naturally, this
may change depending on the configuration of modules in
the framework. Secondly, for each of the shared variables, we
must develop a mapping between their names and the names
of those available externally. Currently we are doing this
manually at each performAction call, but we are working on
an approach which will implement an automated mapping,
based on an interface declaration. Thirdly, we must identify
which areas of the code involving shared variables should
be performed atomically, and consider these as actions. In
these areas, we must make some changes in order to avoid
anomalous behaviour and ensure consistent updates. The
new code should follow the pattern:

1 Check action preconditions.
If preconditions are not met, end.

2 Build external action and call performAction.
If external action fails, end.

3 Apply local effects.

Algorithm 1 shows psuedocode for the Request-Treatment
action in the H1N1 model, as designed to be run as an
independent simulation; Algorithm 2 shows how the action
would need to be adapted for our system, assuming the
shared variables are BedsAvailable and PublicFunding.
Although the rewriting looks substantial, it is well defined,
and happens only at points where shared variables are
involved.

Algorithm 1 H1N1 Request-Treatment action designed for
independent simulation

fundsReqd = (Agent.insurance==Private ? 2000 : 6000);
if (Antivirals > 0 && BedsAvailable > 0

&& PublicFunding > fundsReqd)
BedsAvailable–;
PublicFunding -= fundsReqd;
Antivirals–;
Agent.infectedStatus = false;

endif

5. EVALUATION
We evaluate our system firstly by providing some exper-

imental data regarding the execution time of our model,
and secondly by comparing our approach to shared data
management with other approaches in the literature.

In general, the communications cost of using multiple
machines needs to be balanced by a gain in efficiency due
to the use of multiple processors, if there is not to be an
overall loss of efficiency. As is shown in [10], systems with
computationally intensive agents will benefit most from the
addition of extra CPU power, while those with lightweight
agents will be most affected by the extra cost associated with
communications.

545

Algorithm 2 H1N1 Request-Treatment action adapted for
modular simulation

fundsReqd = (Agent.insurance==Private ? 2000 : 6000);
if (Antivirals > 0)

effects.add(“BedsAvailable”, -1);
effects.add(“PublicFunding”, fundsReqd * -1);
externalAction = new Action(preconditions=null, effects);
externalResult = interface.performAction(externalAction);
if (externalResult)

Antivirals–;
Agent.infectedStatus = false;
endif

endif

In this example, from the perspective of the module
there are no preconditions; all conditions for success are
determined by the external constraints on BedsAvailable
and PublicFunding.

For our experiments with computationally intensive agents
we used a network of 30 machines connected by a gigabit
ethernet. Each machine had 2 x Quad Core, AMD 2356,
a 2.3GHz CPU (i.e. a total of 8 cores), 32Gb RAM
and was running CentOS 5.3. In each run we had 2400
agents, with ten per module. Modules were distributed as
evenly as possible across the available machines. Each agent
was programmed to take between 9 and 12 milliseconds to
compute each action, and 10% of the actions of each agent
involved shared variables. As a comparison we ran the same
number of agents sequentially within a single module, on a
single machine, with no communications (as an integrated
rather than modularised ABM). This resulted in an average
time of 26080ms per timestep, more than six times as long as
the distributed version on a single machine. This is omitted
from Figure 2 as the scale required would reduce clarity.
Each execution ran for 100 timesteps and an average was
taken. Each configuration was also run 5 times, but there
was little variance so we simply averaged these. All the
modules were coded using Repast, with the sequential model
being pure Repast, and the distributed models being Repast
connected to our system.

Figure 2: Average time per step for 240 Compu-
tationally Intensive agents with varying resource
availability

The results show that for these computationally intensive
agents our model is always preferable to running all agents
in a single module.

To assess the impact of our model in situations where we
have very lightweight agents using negligible processing time
per action, we ran an experiment with 1000 agents in each

module, varying the number of modules from one to ten, on a
single machine. The machine used was a Windows XP, 3GB
RAM, Intel Core Duo at 3.16Ghz. We used two variations,
one where we assumed that all agent actions involved shared
variables (and therefore required interaction with the CR),
and another where we made the assumption that 10% of
agent actions would involve a shared variable. As a baseline
we ran the same number of agents in a single module(also on
a single machine), but with no communication with a CR.
The results can be seen in Figure 3. As expected there is a
cost for communications which increases with the number of
agents (i.e. the number of communications). However, we
note that without such communication, either there can be
no data which is affected by multiple modules at the same
time, or all modules must be integrated into a single piece
of software which internally resolves conflicts between agent
actions at a given time step. With a cost of approximately
4 seconds for each time step in a system with 10,000 agents
with 10% actions involving shared variables, we would argue
that this approach is scalable, although of course this is
affected by the granularity of the simulation one wishes to
run.

Figure 3: Execution time for varying numbers of
lightweight agents

We now proceed to evaluate our approach with respect to
the issue of how to allow data to be modified by agents from
different modules, at the same logical time-step. We have
found two other pieces of work that recognise, and attempt
to address some of the limitations that arise with HLA
regarding maintaining logical consistency when multiple
modules affect the same object/variable during a single time
step. In HLA, modules must first request ownership of
the object to be modified, and only then can they affect
it. HLA ensures that only one module can have ownership
of an object at any one real time. However this can lead
to inconsistencies that either wrongly allow joint ownership
at the same logical time, because real-time differs, or
alternatively wrongly disallow ownership at different logical
times, because the real time happens to coincide (see [10]
for detailed analysis of these issues).

Wang et al [15] describe a system where they use a
middleware component called an Interaction Resolver (IR)
which is provided at each module to reconcile inconsistencies
when updates from other modules are received. Each IR
is implemented identically, so that they conclude the same
result without requiring extra communication. However
their approach leads to the kind of problem we mentioned
briefly at the end of section 2.4, where unwarranted failures

546

can occur due to the interaction between shared and local
variables. Considering the earlier example, let us assume
we have two modules M1 and M2. M1 has the following
(partial) internal state:

InfectedAgents(Agent.insurance==public):A1, A2;
InfectedAgents(Agent.insurance==private):A3;
Antivirals=2.

The (partial) world state is:

BedsAvailable=6; PublicFunding=$15,000.

Suppose now that in a particular logical timestep all 3 of our
InfectedAgents request treatment, requiring for each agent
an antiviral, a hospital bed, and either $2,000 or $6,000 of
public funds, depending on whether or not they have private
insurance. Assume also that in the same timestep an agent
A4 from M2 requests an action that uses $4000 of public
funds.

In the system of Wang et al this situation will result
in M1 making some decision regarding which of the 3
agents will receive the antivirals, of which there are only
2. Let us assume that it is decided that A1 and A2
will receive antivirals. At the end of the timestep, each
Interaction Resolver will receive the updates from the other
module and integrate their own updates. As the combined
updates of A1, A2 and A4 would violate a constraint on
PublicFunding, the IR must disallow one or more of these.
Let us assume now that the IR decides in favour of A1
and A4, in which case the effects of A2 will be reversed.
Consequently, overall, both the treatment requests of A2
and A3 have failed. However this is not necessary. There
is an antiviral left, and sufficient public funds to treat A3
(who has private insurance and requires less public funds).
We refer to this situation as anomalous behaviour.

HLA-Repast would avoid the anomalous behaviour de-
scribed, but there are other issues. Firstly HLA-Repast’s
approach to inter-related modifications to shared variables
is not appropriate for our context. Let us consider the above
example from the perspective of HLA-Repast: when A1
executes a Request-Treatment action M1 will initiate the
action effects by requesting the value of one shared variable,
e.g. BedsAvailable, to be modified accordingly. The
provided middleware will then decrement the value of the
BedsAvailable variable and notify all interested modules of
these changes. This will require an event handler associated
with each module to infer that a decrement in BedsAvail-
able is associated with a decrement in PublicFunding, and
subsequently update the module’s knowledge of Public-
Funding also. This solution is not appropriate for systems
like ours, as it would require M2 - which may otherwise
have no interest in BedsAvailable - to monitor this variable
and make inferences based on any changes. Moreover,
quantifying the decrease in PublicFunding will require M2
to know whether the particular agent(s) occupying one of
the BedsAvailable has public or private health insurance.
Furthermore, there may be other modules using hospital
beds which subsequently affect different shared variables.
Defining PublicFunding as the primary variable has similar
problems: any modification via M1 would infer a change to
BedsAvailable whereas a modification via M2 does not.

Another issue that arises in HLA-Repast which is ad-
dressed in our architecture, is the problem that can arise in
HLA (and which HLA-Repast does not provide a solution
for), where unfortunate real time ordering can still result in

failures, even though there is not a logical time problem. In
our example, imagine that instead of the 4 agents wanting
to act at the same time-step, we sequentialise them so that
A1 acts first, then A4. (A2 and A3 are not needed in
this illustration). The sequence that could happen in HLA-
Repast is as follows. We represent logical time as Ti and
real-time as ti.

4

T1 t1 A1 requests ownership of PublicFunding.
Request succeeds, and therefore action succeeds.

T2 t2 A4 requests ownership of PublicFunding.
Request fails as A1’s release has not yet arrived.

T2 t3 A1 releases ownership of PublicFunding.
Use of conservative time management ensures that mostly
this issue will not arise. However, because things do
not happen instantaneously, and some sequentialisation is
employed, the above anomaly can occur in HLA-Repast, as
noted by the authors. In our architecture there is no use of
ownership management (or rather the CR owns all shared
variables in a particular scope), and therefore this issue does
not arise.

Pure HLA is not able to link modifications to Public-
Funding and BedsAvailable, without running the risk of
deadlock. If these modifications are not linked one may
assign a bed, but not the funds, leaving the system in an
inconsistent state.

Our system will ensure that the action is handled atom-
ically, i.e. either all the resources needed for a treatment
are utilised, and it succeeds, or none, and it fails. It will
also ensure that there are no anomalous or unnecessary
failures. The first step in our system will be to process
an action request for A1 to be treated. The M1 module
will ascertain that the local preconditions (availability of an
antiviral) are met, and then send the external-action request
to the CR. Our CR will process, and succeed, the treatment
request for A1, creating a commitment of $6,000 against the
PublicFunding, (as well as the commitment of one of the
BedsAvailable). On receipt of the success from the CR,
M1 will execute the action locally, including decrementing
the value of Antivirals. The action request from M2
regarding A4 will be similarly processed by the CR, resulting
in a total commitment of $10,000 against the $12000 of
PublicFunding. M1 will then start a similar process for A2,
but when this is processed by the CR, it will realise that
only $5,000 uncommitted funds are available, and the CR
will notify M1 that its external action request failed. M1 will
therefore not execute this action locally (and no antiviral will
be used). Now M1 processes the Request-Treatment action
for A3 (for which there is still an antiviral available), sending
the external-action request to the CR which will succeed the
request as it requires only $2,000 of the remaining $5,000 of
public funds. We note that in our system it is important that
the relevant local and shared data that interact are part of
the same action. This however seems a natural requirement.
We also require that local preconditions are assessed prior to
external-action requests involving shared data. In this way
if external-action requests are succeeded, the shared data is
guaranteed to be affected.

4We also assume here that PublicFunding is defined as an
exclusive variable for HLA-Repast, meaning it can only be
used once in a logical time-step, as they do have a solution
for what they call cumulative variables. Public funds would
intuitively be cumulative, but it can nevertheless illustrate
the issue.

547

6. DISCUSSION AND CONCLUSION
In this paper we have presented an architectural frame-

work we have developed that allows us to start to realise
the vision of building a complex simulation by combining
specialised heterogeneous modules, some of which may well
be pre-existing. We have described in detail some data
management issues that can arise in this situation, when
processing actions that logically happen in parallel, across
different modules. In particular problems can arise when
agents within modules have actions which affect both local
variables, and multiple shared variables. Our architecture
appropriately manages these issues. We are not aware of
any other distributed agent based platform which does this.

Our approach allows for a transparent, changeable im-
plementation of concurrency semantics, i.e. when is it
semantically not appropriate for two external actions to
be executed at the same logical time. This partially
addresses the need for increased transparency in agent
based simulations, regarding framework processing that can
influence the outcome of simulations, but is not explicitly
part of the model.

The approach is extensible to allow for more sophisticated
conflict resolution managers, based on information about
a particular shared variable/object. For example some
variables may represent objects that can be used only once,
or a limited number of times, within a logical time period,
while others can potentially be, conceptually, simultaneously
affected by as many modules as desired within a logical
timestep. In HLA-Repast [10] these are referred to as
exclusive (one use) and cumulative usage. Our approach
can be extended to accommodate a more flexible version of
this idea.

The approach could also be extended to allow for some
actions to be partially successful. For instance an action
request to water the crops with 1,000 litres of water may
partially succeed, watering with 500 litres. This is something
we are currently working on.

One issue which does arise in the current framework is that
“fairness” is addressed between modules rather than between
agents. We do not allow one module to execute (too many)
additional actions before other modules have also been able
to put forward action requests. However, this does mean
that agents within a module with few agents will potentially
be advantaged over those in a module with many agents. We
are exploring possible approaches to address this issue, and
we also aim to investigate it by integrating existing modules
and examining the behaviour arising.

We are working to address the fact that there may be some
variables which are only modified by a single module, but
read by many. In our current implementation, this would
require declaring the variable as shared, so that the other
modules can receive any changes via the Conflict Resolver.
We are developing a Data Distribution service to distribute
updates for these variables, allowing them to be declared as
local to a module, thus improving performance. It may be
that the responsibility for a particular variable will change
throughout the simulation. For this functionality we are
developing an Ownership Management service similar to
that of the HLA, which allows variables to be declared
locally, but for their owner to change.

There will undoubtedly be new issues that arise as we
pursue our goal of building a complex climate change adap-
tation simulation, using distributed heterogeneous modules

developed by many different parties. However, we believe
that the system presented here is a solid framework on which
to further develop this goal.

7. ACKNOWLEDGMENTS
The authors would like to thank RMIT Global Cities

Research Institute and in particular Peter Hayes for the
seed funding that made this work possible. Thanks to
the Australian Research Council for continuing support of
this work under grant DP1093290. We also thank Fabio
Zambetta for initial discussions regarding this work.

8. REFERENCES
[1] IEEE 1516 (Standard for Modelling and Simulation

High Level Architecture Framework and Rules) , 2000.

[2] R. M. Axelrod. The Complexity of Cooperation:
Agent-Based Models of Competition and Collaboration.
Princeton Univeristy Press, 1997.

[3] N. Collier. Repast: An extensible framework for agent
simulation. Available online:
http://www.econ.iastate.edu/tesfatsi/RepastTutorial.
Collier.pdf, 2002.

[4] A. Drogoul, D. Vanbergue, and T. Meurisse.
Multi-agent based simulation: Where are the agents?
Lecture Notes in Computer Science, pages 1–15, 2003.

[5] J. Epstein. Generative Social Science - Studies in
Agent-Based Computational Modeling. Princeton
University Press, 2006.

[6] R. M. Fujimoto. Time Management in The High Level
Architecture. Simulation, 71(6):388–400, 1998.

[7] R. M. Fujimoto. Parallel simulation: parallel and
distributed simulation systems. In 33rd Winter
Simulation Conference, pages 147–157, 2001.

[8] G. Gilbert and K. Troitzsch. Simulation for the social
scientist. Open University Press, 2005.

[9] F. Kuhl, R. Weatherly, and J. Dahmann. Creating
computer Simulation Systems: An Introduction to the
High Level Architecture. Prentice Hall, NJ, USA, 1999.

[10] R. Minson and G. Theodoropoulos. Distributing
RePast agent-based simulations with HLA.
Concurrency and Computation: Practice and
Experience, 20(10):1225 – 1256, 2008.

[11] M. North, T. Howe, N. Collier, and J. Vos. Repast
simphony runtime system. In Proceedings of the Agent
2005 Conference on Generative Social Processes,
Models, and Mechanisms, pages 13–15, 2005.

[12] M. Parker. What is Ascape and why should you care.
Journal of Artificial Societies and Social Simulation,
4(1), 2001.

[13] D. Smith and D. Weld. Temporal planning with
mutual exclusion reasoning. In 16th International
Joint Conference on Artificial Intelligence IJCAI’99,
pages 326–333, 1999.

[14] US Defence Modelling and Simulation Office. HLA
Interface Specification, version 1.3, 1998.

[15] L. Wang, S. Turner, and F. Wang. Resolving mutually
exclusive interactions in agent based distributed
simulations. In Proceedings of the 36th conference on
Winter simulation, pages 783–791. Winter Simulation
Conference, 2004.

548

